ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Jeffery D. Densmore, Edward W. Larsen
Nuclear Science and Engineering | Volume 146 | Number 2 | February 2004 | Pages 121-140
Technical Paper | doi.org/10.13182/NSE04-A2398
Articles are hosted by Taylor and Francis Online.
A new variational variance reduction (VVR) technique is developed for improving the efficiency of Monte Carlo multigroup nuclear reactor eigenvalue and eigenfunction calculations. The VVR method employs a variational functional, which requires detailed estimates of both the forward and adjoint fluxes. The direct functional, employed in standard Monte Carlo calculations, requires only limited information concerning the forward flux. The variational functional requires global information about the forward and adjoint fluxes and hence is more expensive to evaluate but is more accurate than the direct functional. In calculations, this increased accuracy outweighs the extra expense, resulting in a more efficient Monte Carlo simulation. In our work, we evaluate the variational functional using Monte Carlo-calculated forward flux estimates and deterministically calculated adjoint flux estimates. Also, we represent the adjoint flux as a low-order polynomial in space and angle, which is accurate for diffusive systems. (In such systems, which are common in reactor analysis problems, the angular flux is locally nearly linear in space and angle.) Using this adjoint representation, we develop specific VVR methods for eigenvalue problems, in which an estimate of the eigenvalue k in a criticality calculation is desired, and eigenfunction problems, in which an estimate of a detector response due to a fission neutron source during a criticality calculation is desired. The resulting VVR method is very efficient for the problems of interest. With a set of example problems, we demonstrate the increased efficiency of the VVR method over standard Monte Carlo.