ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Clinton T. Ballinger, James A. Rathkopf, William R. Martin
Nuclear Science and Engineering | Volume 112 | Number 4 | December 1992 | Pages 283-295
Technical Paper | doi.org/10.13182/NSE92-A23978
Articles are hosted by Taylor and Francis Online.
A new method, response history Monte Carlo (RHMC), has been developed for solving electron transport problems through homogeneous material, and it is more accurate than the conventional method for energies below a few hundred kilo-electron-volts. Since electrons can suffer thousands of collisions and lose only a fraction of their incident energy, analog Monte Carlo (single scatter) is extremely time-consuming. The conventional electron transport method avoids simulating single scattering events by modeling the effect of multiple collisions. This condensed history method requires assumptions that are invalid at lower energies to analytically determine probability distribution functions (pdfs) representing the electron state after multiple collisions. Like the condensed history method, the RHMC method uses an approximate random walk where each step represents the cumulative effect of many collisions. However, the RHMC method is more accurate than the condensed history method since the multiscattered electron state is sampled from pdfs predetermined by analog Monte Carlo calculations instead of approximate analytic solutions.