ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Yoshihiko Kaneko, Fujiyoshi Akino, Yoshiro Suzuoki, Kenji Kitadate, Ryosuke Kurokawa,Kinji Koyama
Nuclear Science and Engineering | Volume 55 | Number 1 | September 1974 | Pages 105-116
Technical Note | doi.org/10.13182/NSE74-A23974
Articles are hosted by Taylor and Francis Online.
Neutron diffusion coefficients were measured in square lattices of aluminum channels in light water in both the axial and the radial directions by the pulsed neutron technique. The diameter of the channels was 15 mm and the pitch of the lattice was 19 or 24 mm. Good agreement was observed between the experimental values of the axial diffusion coefficient, Da, and those calculated by the two-dimensional discrete Sn method. In this calculation, the value of the diffusion coefficient was interpreted as the slope of the decay constant as a function of the geometrical buckling in the axial direction of the channels. Also, the measured values of the radial diffusion coefficients agreed well with those calculated by the well-known Benoist practical formulas. The relation between the extrapolation distance and the effective transport length in the axial direction, ℓa and 3Da/V was numerically investigated. The ratio of the former to the latter is found to be considerably higher than the value of 0.71 used hitherto.