ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Yoshihiko Kaneko, Fujiyoshi Akino, Yoshiro Suzuoki, Kenji Kitadate, Ryosuke Kurokawa,Kinji Koyama
Nuclear Science and Engineering | Volume 55 | Number 1 | September 1974 | Pages 105-116
Technical Note | doi.org/10.13182/NSE74-A23974
Articles are hosted by Taylor and Francis Online.
Neutron diffusion coefficients were measured in square lattices of aluminum channels in light water in both the axial and the radial directions by the pulsed neutron technique. The diameter of the channels was 15 mm and the pitch of the lattice was 19 or 24 mm. Good agreement was observed between the experimental values of the axial diffusion coefficient, Da, and those calculated by the two-dimensional discrete Sn method. In this calculation, the value of the diffusion coefficient was interpreted as the slope of the decay constant as a function of the geometrical buckling in the axial direction of the channels. Also, the measured values of the radial diffusion coefficients agreed well with those calculated by the well-known Benoist practical formulas. The relation between the extrapolation distance and the effective transport length in the axial direction, ℓa and 3Da/V was numerically investigated. The ratio of the former to the latter is found to be considerably higher than the value of 0.71 used hitherto.