ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
M. Segev, M. Caner
Nuclear Science and Engineering | Volume 112 | Number 1 | September 1992 | Pages 43-53
Technical Paper | doi.org/10.13182/NSE92-A23950
Articles are hosted by Taylor and Francis Online.
A WIMS-based calculational route for pebble-bed fuel has been established. An outstanding advantage of the WIMS code is its integrated route from basic lattice data to burnup-dependent lattice cross sections. The problem in applying WIMS to pebble-bed fuel is that it lacks spherical geometry. This problem is solved by establishing a number of practical equivalences enabling the replacement of a lattice of spherical fuels by a lattice of cylindrical fuels. A special program was written to convert physical data into WIMS input files, including the Dan-coff factor required for resonance shielding in the multilayer multicell pebble lattice. This capacity provides all that is necessary to generate core-homogenized cross sections directly applicable to core studies. Also generated are zone-homogenized cross sections; in some cases, their use in a transport code results in more accurate core-homogenized cross sections. In terms of the fuel infinite criticality factor, this added accuracy is in the range of 1 to 3 mk for fuel free of absorbers or fuel carrying boron-only absorbers; it is in the range of 3 to 12 mk for fuel carrying hafnium absorbers.