ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sunil K. Menon, Alexander G. Parlos
Nuclear Science and Engineering | Volume 111 | Number 3 | July 1992 | Pages 294-308
Technical Paper | doi.org/10.13182/NSE92-A23942
Articles are hosted by Taylor and Francis Online.
Controller design for U-tube-steam generator (UTSG) water level at low operating powers is addressed via a systematic design procedure. The Linear Quadratic Gaussian with Loop Transfer Recovery method is used to design compensators valid in the vicinity of various power levels, which are then scheduled using the primary loop ΔT to obtain a nonlinear controller applicable in the entire operating regime. The nominal UTSG models are obtained by numerical linearization of a plant-validated simulation code. The individual compensators are designed using the desired controller bandwidth as the only design freedom. Even though the individual compensator performance and robustness properties are guaranteed only in the linear domain, extensive computer simulations of the gain-scheduled controller indicate that a number of these properties are carried to the nonlinear domain, enhancing the performance and robustness of the water level controller. The controller is proposed for use as an alternative to manual control during low-power operation or as a backup controller when flow rate sensor failures necessitate the use of only the downcomer water level signal for feedback. Even though the results of this systematic controller design appear very encouraging, they are only preliminary, and additional work is warranted to resolve a number of digital controller implementation issues.