ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Gen-Shun Chen, John M. Christenson, Dow-Yung Yang
Nuclear Science and Engineering | Volume 111 | Number 3 | July 1992 | Pages 279-293
Technical Paper | doi.org/10.13182/NSE92-A23941
Articles are hosted by Taylor and Francis Online.
The alternating direction implicit (ADI) method has been widely used to obtain numerical solutions of the two-dimensional, time-dependent, multigroup neutron diffusion equations. However, the conventional ADI method is unstable for heterogeneous problems unless extremely small time steps are used. Recently, the suitability of the ADI method for parallel computation has been noted since it is based on the solution of a system of independent block-tridiagonal matrix equations that can be solved in parallel. More precisely, on a computer with p processors, p members of the tridiagonal system can be solved in parallel using the well-known Gaussian elimination algorithm. By improving the stability of the ADI method, the method becomes extremely attractive for parallel computer applications. A mixed implicit-explicit three-level ADI method for the solution of the two-dimensional multigroup diffusion equations is introduced. Mixed implicit-explicit methods are usually more effective than purely explicit or implicit procedures for the solution of stiff equations and, for the type of problem considered, lead to a demonstrated stability improvement over the conventional ADI method. Numerical studies using the MADIprogram, which implements the three-level ADI method, show that by using the same time-step size, the method obtains results that are almost as accurate as those of the TWIGL program in about one-third to one-fourth the computational time for both homogeneous and heterogeneous two-group problems.