ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
G. Marleau, A. Hebert
Nuclear Science and Engineering | Volume 111 | Number 3 | July 1992 | Pages 257-270
Technical Paper | doi.org/10.13182/NSE92-A23939
Articles are hosted by Taylor and Francis Online.
The J± technique is an approximation of the collision probability (CP) method in which a probability matrix is associated with each homogeneous region, and then, these regions are coupled using an interface current technique. The main advantages of the J± technique are its speed and the fact that the probability matrix associated with each region is completely decoupled from its environment. Previous work using the DP0 approximation of the J± technique has been carried out for cluster geometries. Here, the DP1 approximation is investigated, and in addition to the uniform angular flux contribution, linearly anisotropic contributions are also considered. For cluster geometries, this results in an approximation for the angular fluxes of the form ψ(rs,Ω) = a + b(Ω.N), where a and b are expansion coefficients to be determined, Ω is the neutron angular direction, and N is normal at surface s. A surf ace fractioning correction is also introduced to remove the diffraction effect that arises when using the J± method in two-dimensional geometries. The results obtained by means of the DPI approximation are now very close to those of the CP method.