ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
J. Devooght, C. Smidts
Nuclear Science and Engineering | Volume 111 | Number 3 | July 1992 | Pages 229-240
Technical Paper | doi.org/10.13182/NSE92-A23937
Articles are hosted by Taylor and Francis Online.
The concept of probabilistic reactor dynamics is formalized in which deterministic reactor dynamics is supplemented by the fact that deterministic trajectories in phase-space switch to other trajectories because of stochastic changes in the structure of the reactor such as a change of state of components as a result of a malfunction, regulation feedback, or human error. A set of partial differential equations is obtained under a Markovian assumption from the Chapman-Kolmogorov equation giving the probability π(x, i, t) that the reactor is in a state x where vector x describes neutronic and ther-mohydraulic variables, and in a component state i at time t. The integral form is equivalent to an event tree where branching occurs continuously. A backward Kolmogorov equation allows evaluation of the probability and the average time for x(t) to escape from a given safety domain.