ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Edgar Kiefhaber
Nuclear Science and Engineering | Volume 111 | Number 2 | June 1992 | Pages 197-204
Technical Note | doi.org/10.13182/NSE92-A23933
Articles are hosted by Taylor and Francis Online.
For high-accuracy criticality calculations, one should take into account the difference in the energy distributions between prompt and delayed fission neutrons. In steady-state reactor calculations, it is usually assumed that delayed and prompt neutrons are emitted with the same energy distribution. This approximation may lead to systematic deviations in keffof between −0.2 and +0.05%. While for typical cores of liquid-metal-cooled fast reactors and corresponding critical assemblies the effect is usually fairly small, it may become more important for low-enriched k∞ experiments and for highly enriched, high-leakage cores. For group cross-section adjustment procedures usually covering a wide range of critical assemblies with fairly different nuclear characteristics, a proper treatment of the energy distributions of delayed neutrons could be particularly important for excluding systematic differences as far as possible.