ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
C. B. Carrico, E. E. Lewis, G. Palmiotti
Nuclear Science and Engineering | Volume 111 | Number 2 | June 1992 | Pages 168-179
Technical Paper | doi.org/10.13182/NSE92-1
Articles are hosted by Taylor and Francis Online.
The variational nodal transport method is generalized for the effective treatment of multigroup criticality problems in two and three dimensions. A symbolic manipulation procedure is developed to achieve the fully automated generation of nodal response matrices in three-dimensional and non-Cartesian geometries. A red-black partitioned matrix algorithm for accelerating the solutions of the resulting within-group equations is presented, and its efficacy demonstrated. The methods are implemented as an option of the Argonne National Laboratory code DIF3D and applied to a series of five benchmark problems in x-y-z and hexagonal-z geometries. For reactors with large transport effects, the variational P3 calculations agree with accurate Monte Carlo eigenvalues to within a few hundredths to a few tenths of a percent while requiring Cray X-MP computing times ranging from tens to hundreds of seconds.