ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ribbon-cutting scheduled for Advanced Manufacturing Collaborative
Energy Secretary Chris Wright will attend the opening of the Advanced Manufacturing Collaborative in Aiken, S.C., on August 7. Wright will deliver remarks and join Savannah River National Laboratory leadership and partners for a ribbon-cutting ceremony.
Marvin L. Adams, William R. Martin
Nuclear Science and Engineering | Volume 111 | Number 2 | June 1992 | Pages 145-167
Technical Paper | doi.org/10.13182/NSE92-A23930
Articles are hosted by Taylor and Francis Online.
We present a discretization of the diffusion equation that can be used to accelerate transport iterations when the transport equation is spatially differenced by a discontinuous finite element (DFE) method. That is, we present a prescription for diffusion synthetic acceleration of DFE transport iterations. (The well-known linear discontinuous and bilinear discontinuous schemes are examples of DFE transport differencings.) We demonstrate that our diffusion discretization can be obtained in any coordinate system on any grid. We show that our diffusion discretization is not strictly consistent with the transport discretization in the usual sense. Nevertheless, we find that it yields a scheme with unconditional stability and rapid convergence. Further, we find that as the optical thickness of spatial cells becomes large, the spectral radius of the iteration scheme approaches zero (i.e., instant convergence). We give analysis results for one- and two-dimensional Cartesian geometries and numerical results for one-dimensional Cartesian and spherical geometries.