ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Marvin L. Adams, William R. Martin
Nuclear Science and Engineering | Volume 111 | Number 2 | June 1992 | Pages 145-167
Technical Paper | doi.org/10.13182/NSE92-A23930
Articles are hosted by Taylor and Francis Online.
We present a discretization of the diffusion equation that can be used to accelerate transport iterations when the transport equation is spatially differenced by a discontinuous finite element (DFE) method. That is, we present a prescription for diffusion synthetic acceleration of DFE transport iterations. (The well-known linear discontinuous and bilinear discontinuous schemes are examples of DFE transport differencings.) We demonstrate that our diffusion discretization can be obtained in any coordinate system on any grid. We show that our diffusion discretization is not strictly consistent with the transport discretization in the usual sense. Nevertheless, we find that it yields a scheme with unconditional stability and rapid convergence. Further, we find that as the optical thickness of spatial cells becomes large, the spectral radius of the iteration scheme approaches zero (i.e., instant convergence). We give analysis results for one- and two-dimensional Cartesian geometries and numerical results for one-dimensional Cartesian and spherical geometries.