ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Marvin L. Adams, William R. Martin
Nuclear Science and Engineering | Volume 111 | Number 2 | June 1992 | Pages 145-167
Technical Paper | doi.org/10.13182/NSE92-A23930
Articles are hosted by Taylor and Francis Online.
We present a discretization of the diffusion equation that can be used to accelerate transport iterations when the transport equation is spatially differenced by a discontinuous finite element (DFE) method. That is, we present a prescription for diffusion synthetic acceleration of DFE transport iterations. (The well-known linear discontinuous and bilinear discontinuous schemes are examples of DFE transport differencings.) We demonstrate that our diffusion discretization can be obtained in any coordinate system on any grid. We show that our diffusion discretization is not strictly consistent with the transport discretization in the usual sense. Nevertheless, we find that it yields a scheme with unconditional stability and rapid convergence. Further, we find that as the optical thickness of spatial cells becomes large, the spectral radius of the iteration scheme approaches zero (i.e., instant convergence). We give analysis results for one- and two-dimensional Cartesian geometries and numerical results for one-dimensional Cartesian and spherical geometries.