ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
S. N. Cramer, F. G. Perey
Nuclear Science and Engineering | Volume 111 | Number 1 | May 1992 | Pages 102-111
Technical Paper | doi.org/10.13182/NSE92-A23926
Articles are hosted by Taylor and Francis Online.
The time-dependent spectrum of neutrons in the water-moderated Oak Ridge Electron Linear Accelerator (ORELA) target is calculated using a modified version of the MORSE multigroup Monte Carlo code with an analytic hydrogen scattering model. Distributions of effective neutron distance traversed in the target are estimated with a time- and energy-dependent algorithm from the leakage normal to the target face. The 10-eV to 20-MeV energy range is adequately represented in the MORSE code by the 174-group VITAMIN-E cross-section library with a P5 expansion. An approximate representation of the ORELA positron source facility, recently installed near the target, is included in the calculations to determine any perturbations the positron source might create in the computed neutron distributions from the target. A series of coupled Monte Carlo calculations is performed from the target to the positron source and back to the target using a next-event estimation surface source for each step. The principal effect of the positron source is an increase in the distance for the lower energy neutron spectra, producing no real change in the distributions where the ORELA source is utilized for experiments. Different configurations for the target are investigated to simulate the placement of a shadow bar in the neutron beam. These beam configurations include neutrons escaping from (a) the central tantalum plates only, (b) the entire target with the tantalum plates blocked out, and (c) only a small area from the water. Comparisons of the current data with previous calculations having a less detailed model of the tantalum plates are satisfactory.