ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Min Lee, Jan Sea Wu
Nuclear Science and Engineering | Volume 111 | Number 1 | May 1992 | Pages 82-101
Technical Paper | doi.org/10.13182/NSE92-A23925
Articles are hosted by Taylor and Francis Online.
Releases of radionuclides and the production of aerosols during the molten core/concrete interaction (MCCI) phase of degraded core accidents in light water reactors are termed “ex-vessel releases.” The VANESA and METOXA codes were respectively developed by the U.S. Nuclear Regulatory Commission and the Industrial Degraded Core Rulemaking (IDCOR) program to quantify ex-vessel releases. Comparison of calculations by VANESA and METOXA (under identical initial and boundary conditions) show that except for niobium and strontium species, the predicted ex-vessel radionuclide release rates are within an order of magnitude of each other. In an actual application of these two codes to the source term quantification of severe accidents, the initial and boundary conditions for the calculations could be significantly different, as demonstrated in an analysis of an anticipated transient without scram accident sequence in a boiling water reactor. For the same amount of debris, the MCCI thermal-hydraulic results provided for METOXA from a DECOMP calculation tend to drive more radioactive material from the debris pool than those provided for VANESA from a CORCON/MOD2 calculation. The MAAP code, however, predicts that less mass is involved in the MCCI.