ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
D. Rozon, M. Beaudet
Nuclear Science and Engineering | Volume 111 | Number 1 | May 1992 | Pages 1-20
Technical Paper | doi.org/10.13182/NSE92-A23919
Articles are hosted by Taylor and Francis Online.
A nonlinear optimization method based on first-order generalized perturbation theory (GPT) and mathematical programming has been extended to three dimensions in the code OPTEX and applied to a realistic problem in the physics design of Canada deuterium uranium (CANDU) reactors. The choice of three-dimensional linear GPT for computing the cost coefficients is justified, and the optimization approach is discussed in reference to methods used for light water reactor fuel manage-ment. The design problem consists of simultaneously adjusting the fueling rate distribution and the grading of the adjuster rods in the core, while satisfying limits on the maximum bundle and channel powers at full power equilibrium refueling. Passage to three dimensions is a requirement for a real-istic modeling of equilibrium refueling in CANDU. It has a significant effect on the system equations, which become nonlinear with the inclusion of the axial dimension. The nature of the constraints is also affected: Separate limits on channel and bundle powers must now be accounted for. These problems are addressed, and a practical optimization scheme is proposed that can handle realistic CANDU core and fuel management design problems.