ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
John A. Bernard, David D. Lanning
Nuclear Science and Engineering | Volume 110 | Number 4 | April 1992 | Pages 425-444
Technical Paper | doi.org/10.13182/NSE92-A23916
Articles are hosted by Taylor and Francis Online.
Factors relevant to the design and implementation of digital controllers for research reactors are discussed with emphasis on the rationale for incorporating a system model in the control law. For this purpose, proportional-integral-derivative and period-generated control are compared. The latter is a model-based technique that achieves excellent trajectory tracking of nonlinear systems. It does this by combining feedback and feedforward control action in a manner that cancels the effects of the system’s dynamics on the controller’s performance. Model-based control is also superior in that it permits replication of some of the functions that humans perform when exercising control. In particular, models can be used to predict expected plant response and thereby facilitate diagnosis. The importance of validated signals, supervisory algorithms, properly designed man-machine interfaces, and automated diagnostics are discussed in relation to control law implementation. In addition, a summary is provided of reactor dynamics as related to control, and arguments are presented in support of using the rate of change of reactivity as the actuator signal. Experimental results obtained from trials of digital controllers on both the 5-MW(thermal) Massachusetts Institute of Technology Research Reactor and the Annular Core Research Reactor that is operated by Sandia National Laboratories are included.