ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kenan Ünlü, Dietrich H. Vincent
Nuclear Science and Engineering | Volume 110 | Number 4 | April 1992 | Pages 386-393
Technical Paper | doi.org/10.13182/NSE92-A23912
Articles are hosted by Taylor and Francis Online.
Helium trapping and release are studied for the nickel-rich amorphous alloys Ni75.1 Cr14.0-P10.1C0.08, Ni63.5Zr36.5, and Ni87.7P12.3. Helium-3 is introduced into the samples by implantation at 150-keV energy. The depth distribution of the implanted helium is observed by neutron depth profiling employing the reaction 3He(n, p)3H. Two implantation doses are used: 1 × 1016 and 5 × 1016 3He/cm . Both implantation doses were chosen to be low enough to avoid blistering or flaking of the surface of the samples. The helium release behavior of the samples is studied by taking depth profiles after each annealing stage. At the same time, electron diffraction is used on parallel samples to observe the microstructure of the samples as a function of annealing. The annealing sequence for each material is broken off when electron diffraction indicated the existence of relatively large crystals in a sample. Only a small fraction of the implanted helium is released in most cases, and a clear correlation between helium release and recrystallization can be found in only one case.