ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. Gerling, F. P. Schimansky, R. Wagner
Nuclear Science and Engineering | Volume 110 | Number 4 | April 1992 | Pages 374-385
Technical Paper | doi.org/10.13182/NSE92-A23911
Articles are hosted by Taylor and Francis Online.
During thermal annealing, amorphous Fe40Ni40P20 becomes brittle via a two-step process at 220 and 300°C. The first step results from a loss of excess free volume. This embrittlement is reversible: During subsequent neutron irradiation, a swelling of the alloy is observed, which corresponds to an increase in excess volume and a complete restoration of the ductility. Small-angle neutron scattering reveals that the second step of embrittlement, during which the specimen remains fully amorphous, is induced by phase separation into regions enriched and depleted in phosphorus. If amorphous Fe40Ni40P20 is exposed to neutron irradiation prior to the heat treatment, a similar phase separation into amorphous phosphorus-enriched and phosphorus-depleted regions occurs. While the radius of the phosphorus-rich regions is about the same regardless of whether or not the specimen has been irradiated, the onset of phase separation occurs at lower temperatures for preirradiated samples; under identical annealing conditions, the volume fraction of phosphorus-rich clusters is much larger in preirradiated FeNiP than in unirradiated material. The faster phase separation kinetics are a consequence of the irradiation-induced excess volume that allows for an increased mobility of individual atoms.