ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
O. Köberl, R. Seiler, R. Chawla
Nuclear Science and Engineering | Volume 146 | Number 1 | January 2004 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE04-A2391
Articles are hosted by Taylor and Francis Online.
The shift toward low-enrichment uranium (LEU) fuel for gas-cooled high-temperature reactors (HTRs) has revealed a lack of experimental data for validating neutronics codes that are used for the design and licensing of such systems. In the framework of the LEU-HTR experimental program at the PROTEUS critical facility, the safety-related effects of accidental moderation increase (ingress of water or other hydrogeneous compounds) in pebble-bed HTR core configurations employing low-enriched (16.7%) fuel were investigated. An important neutron balance component in this context is the integral reaction rate ratio of 238U capture (C8) relative to 235U fission (F5).It was necessary to develop new experimental techniques for the accurate measurement of C8/F5 in the doubly heterogeneous fuel pebbles. These have involved the utilization of specially prepared particle foils on the one hand and the counting of whole fuel pebbles on the other. Core-center measurements employing both experimental methods have been carried out in two different HTR-PROTEUS configurations (with and without accidental moderation increase simulation, respectively). In each case, satisfactory agreement was obtained between the experimental results based on the two techniques. By carrying out a comparison of particle-foil C8/F5 measurements in the PROTEUS reactor's thermal column with the results of standard foil-activation measurement techniques, the systematic uncertainty (1) of the core-center measurements could be reduced by ~0.6%, yielding a net experimental error of ±1% with either of the new methods. A comparison of the experimental results with calculations based on the MICROX-2/TWODANT codes in conjunction with JEF-1 cross sections has indicated that this calculational route overpredicts the core-center C8/F5 value by ~2.5% in both the investigated configurations.