ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Y. D. Harker, R. A. Anderl, G. K. Becker, L. G. Miller
Nuclear Science and Engineering | Volume 110 | Number 4 | April 1992 | Pages 355-368
Technical Paper | doi.org/10.13182/NSE92-A23909
Articles are hosted by Taylor and Francis Online.
Neutron spectrum measurements are performed on the aluminum-oxide-filtered neutron beam at the Brookhaven Medical Research Reactor (BMRR). Two independent measurement techniques are used in the spectrum characterization: (a) foil activation spectrometry and (b) proton-recoil spectrometry. Activation foil assemblies are irradiated at the exit port of the beam facility. Dominant resonances in selected activation reactions are used to measure the epithermal neutron spectrum. The intermediate and fast energy ranges of the neutron spectrum are measured by threshold reactions and the 10B-filtered 235U fission reaction. Neutron spectral data are derived from the activation data by two approaches: (a) an analysis that yields neutron flux values at the energies of the dominant or primary resonances in the epithermal activation reactions and (b) an analysis that utilizes all the activation data simultaneously in a spectrum unfolding process using the FERRET data adjustment code. Hydrogen-filled proton-recoil proportional chambers are used at the beam port exit to acquire data of a higher energy resolution than that obtainable through foil activation techniques. These measurements are made to determine if structure in the aluminum scattering cross section would produce significant structure in the filtered spectrum in the fast neutron region.