ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Nasir M. Mirza, K. O. Ott
Nuclear Science and Engineering | Volume 110 | Number 2 | February 1992 | Pages 168-176
Technical Notes | doi.org/10.13182/NSE92-A23886
Articles are hosted by Taylor and Francis Online.
There is a problem in the neutron flux calculation in regions with a strong spectral transition from epithermal toward thermal. Space-dependent group constants are developed for the thermal range to treat the highly nonseparable space- and energy-dependent flux distribution that characterizes the transition of fast neutron spectra into partially thermalized spectra. The weighting spectra are obtained from a parametric application of the heavy gas model for scattering with absorption cross sections that include the resonances near and below 1 eV. A space dependence is introduced into weighting spectra by relating the parametric solution of the zero-dimensional spectral equation to thermal and epithermal group fluxes obtained from a prior one-dimensional diffusion calculation. Subsequently, space-dependent thermal group constants are generated. The method is implemented in a standard multigroup diffusion code, executed iteratively. This procedure was applied to compact liquid-metal reactor designs having thermalizing reflector regions. The results indicate the effect of global parameters such as the size of the thermalizing reflector on the group constants, which are considerably different from the classical local group constants.