ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
J. E. Woollard, T. E. Blue, J. F. Curran, M. C. Dobelbower, H. R. Busby, R. F. Barth
Nuclear Science and Engineering | Volume 110 | Number 1 | January 1992 | Pages 96-103
Technical Paper | doi.org/10.13182/NSE92-A23879
Articles are hosted by Taylor and Francis Online.
Boron neutron capture therapy (BNCT) is an experimental radiation therapy that is being developed for the treatment of malignant tumors. One requirement for successful BNCT is that a sufficient amount of 10B concentrates in the tumor while clearing from normal tissues and blood. Many pharmaceuticals are currently being developed to selectively deliver 10B to a tumor. To evaluate the effectiveness of various 10B delivery agents, the concentrations of boron in blood, tumor, and normal tissues must be known. Using the solid-state nuclear track detector CR-39, a tissue assay technique has been developed to spatially determine 10B concentrations in tissue samples. The technique has been used to quantify 10B concentrations in tumor and normal tissue on lines across rat brain tissue sections. This was done by combining 10B concentrations measured on lines across the CR-39 with color digital images of the tissue section. Coupling the methodology that was developed for tissue samples with an existing analytical technique for blood-10B concentration measurements allows for complete evaluation of 10B distributions in blood, tumor, and normal tissues and should be useful in evaluating various 10B delivery agents for use in BNCT.