ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. E. Woollard, T. E. Blue, J. F. Curran, M. C. Dobelbower, H. R. Busby, R. F. Barth
Nuclear Science and Engineering | Volume 110 | Number 1 | January 1992 | Pages 96-103
Technical Paper | doi.org/10.13182/NSE92-A23879
Articles are hosted by Taylor and Francis Online.
Boron neutron capture therapy (BNCT) is an experimental radiation therapy that is being developed for the treatment of malignant tumors. One requirement for successful BNCT is that a sufficient amount of 10B concentrates in the tumor while clearing from normal tissues and blood. Many pharmaceuticals are currently being developed to selectively deliver 10B to a tumor. To evaluate the effectiveness of various 10B delivery agents, the concentrations of boron in blood, tumor, and normal tissues must be known. Using the solid-state nuclear track detector CR-39, a tissue assay technique has been developed to spatially determine 10B concentrations in tissue samples. The technique has been used to quantify 10B concentrations in tumor and normal tissue on lines across rat brain tissue sections. This was done by combining 10B concentrations measured on lines across the CR-39 with color digital images of the tissue section. Coupling the methodology that was developed for tissue samples with an existing analytical technique for blood-10B concentration measurements allows for complete evaluation of 10B distributions in blood, tumor, and normal tissues and should be useful in evaluating various 10B delivery agents for use in BNCT.