ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Floyd J. Wheeler, David W. Nigg
Nuclear Science and Engineering | Volume 110 | Number 1 | January 1992 | Pages 16-31
Technical Paper | doi.org/10.13182/NSE92-A23872
Articles are hosted by Taylor and Francis Online.
Calculation of physically realistic radiation dose distributions for boron neutron capture therapy (BNCT) is a complex, three-dimensional problem. Traditional one-dimensional (slab) and two-dimensional (cylindrical) models, while useful for neutron beam design and performance analysis, do not provide sufficient accuracy for actual clinical use because the assumed symmetries inherent in such models do not ordinarily exist in the real world. Fortunately, however, it is no longer necessary to make these types of simplifying assumptions. Recent dramatic advances in computing technology have brought full three-dimensional dose distribution calculations for BNCT into the realm of practicality for a wide variety of routine applications. Once a geometric model and the appropriate material compositions have been determined, either stochastic (Monte Carlo) or deterministic calculations of all dose components of interest can now be performed more rapidly and inexpensively for the true three-dimensional geometries typical of actual clinical applications of BNCT. Demonstrations of both Monte Carlo and deterministic techniques for performing three-dimensional dose distribution analysis for BNCT are provided. Calculated results are presented for a three-dimensional Lucite canine-head phantom irradiated in the epithermal neutron beam available at the Brookhaven Medical Research Reactor. The deterministic calculations are performed using the three-dimensional discrete ordinates method. The Monte Carlo calculations employ a novel method for obtaining spatially detailed radiation flux and dose distributions without the use of flux-at-a-point estimators. The calculated results are in good agreement with each other and with thermal neutron flux measurements taken using copper-gold flux wires placed at various locations in the phantom.Three-dimensional dose distribution calculations using both techniques are also presented for the same canine phantom irradiated in the proposed epithermal neutron beam in the Power Burst Facility (PBF) reactor located at the Idaho National Engineering Laboratory. Again, calculated results obtained using the two methods are in good agreement. This exercise allows a direct comparison of the performance of the two epithermal neutron beams for a realistic three-dimensional BNCT application. The PBF beam has a lower level of fast neutron contamination and is much better collimated, resulting in a significantly higher therapeutic ratio (tumor dose relative to normal tissue dose), especially for deep-seated tumor locations.