ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Kazuo Shin, Yoshiaki Ishii, Kagetomo Miyahara, Yoshitomo Uwamino, Hideyuki Sakai, Sigeo Numata
Nuclear Science and Engineering | Volume 109 | Number 4 | December 1991 | Pages 380-390
Technical Paper | doi.org/10.13182/NSE91-A23863
Articles are hosted by Taylor and Francis Online.
Spectral measurements of intermediate-energy neutrons (i.e., En ≤ 65 MeV) transmitted through iron, lead, graphite, and concrete shields are described. Concurrently, transmitted spectra of associated gamma rays are also obtained. A collimated beam of neutrons induced by 65-MeV protons in a thick copper target is utilized in the measurements. Measurements of both neutrons and gamma rays penetrating the shields are by an NE-213 scintillator. Monte Carlo calculations using the MORSE code are carried out with the DLC-87 Hilo multigroup cross sections. For neutron spectra, comparison between the measured and calculated spectra indicates that the DLC-87 data reproduce the measured data well for the graphite and the concrete shields but give only slightly higher values at energies of 15 to 30 MeV for the iron shield and overpredict the lead-transmitted spectra. Tests on the cross sections reveal that the underestimation of the total iron cross section by the DLC-87 in the 15- to 25-MeV energy range is the reason for the overestimation of the iron transmitted spectra. Neglecting the elastic scattering in evaluating the lead data is the reason for the large overestimation of the lead transmitted spectra. Gamma-ray spectra obtained behind the graphite and concrete shields are well explained by the transmission of source gamma rays from the copper target through the shields. However, the intensity of the measured photons behind iron and lead shields is much larger than that of transmitted source photons. The discrepancies are not explained by including neutron-induced gamma rays for neutrons from thermal energy up to 15 MeV. The gamma-ray production cross-section data may be required for neutrons >15 MeV to explain the remaining large discrepancies.