ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ribbon-cutting scheduled for Advanced Manufacturing Collaborative
Energy Secretary Chris Wright will attend the opening of the Advanced Manufacturing Collaborative in Aiken, S.C., on August 7. Wright will deliver remarks and join Savannah River National Laboratory leadership and partners for a ribbon-cutting ceremony.
K. V. Subbaiah, A. Natarajan, D. V. Gopinath, K. Takeuchi
Nuclear Science and Engineering | Volume 109 | Number 4 | December 1991 | Pages 373-379
Technical Paper | doi.org/10.13182/NSE91-A23862
Articles are hosted by Taylor and Francis Online.
A seminumerical technique developed for solving the transport equation in slab geometry is adopted for a point isotropic source of gamma rays in spherical geometry. Only Compton scattering is dealt with currently. Two quantities, namely surface flux and surface source, are introduced to circumvent singularities at the origin. A collision-by-collision iterative approach is followed to solve the coupled form of integral transport equations separating the spatial and energy transmission kernels. The spatial transmission kernel for obtaining surface flux from surface source is derived. The energy angle transmission kernels are evaluated by taking recourse to Legendre polynomial expansions. The uncollided and first collision surface fluxes are obtained analytically. An appropriate functional form is chosen for the spatial interpolation of flux and source facilitating large spatial mesh widths. The computer program ASFIT-Sphere is written on the basis of these formulations. Energy flux spectra and angular distributions obtained by the current method of scattered photons 2 and 3 mean-free-paths away from a 137Cs source in water are compared with the data of ANS-6 shielding benchmark experiments. Comparison with calculations by other methods is also included.