ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
James P. Adams, Glenn E. McCreery, Jong H. Kim
Nuclear Science and Engineering | Volume 109 | Number 4 | December 1991 | Pages 325-340
Technical Paper | doi.org/10.13182/NSE91-A23858
Articles are hosted by Taylor and Francis Online.
An alternate pump trip criterion is described that meets the intent of the U.S. Nuclear Regulatory Commission pump trip requirement [i.e., to minimize primary system mass loss during a small-break loss-of-coolant accident (SBLOCA)] while providing the operators with a valuable tool to differentiate between various generic types of off-nominal transient conditions (heatup, cooldown, and loss-of-coolant accident) and to determine the efficacy of the recovery from these transients. The technique also provides a reliable measure of primary system mass inventory during heatup and cooldown transients and in the early phases of an SBLOCA. This method was developed by examining pump response to a variety of transients conducted in the Loss-of-Flow Test (LOFT) Facility. To explain the data, a mathematical model was developed based on one-dimensional pump theory. The response of the LOFT pumps was extended to full-scale commercial pressurized water reactor (PWR) pump response by examining general centrifugal pump behavior and by calculating PWR response to an SBLOCA. The results of the study indicate that the PWR pump behavior can be expected to be similar to that measured in LOFT and that the pump model can be used to gain valuable information on the status of a PWR during off-nominal transient conditions.