ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Beyond conventional boundaries: Innovative construction technologies pave the way for advanced reactor deployment
In a bid to tackle the primary obstacle in nuclear deployment—construction costs—those in industry and government are moving away from traditional methods and embracing innovative construction technologies.
T. J. Downar, H. Khalil
Nuclear Science and Engineering | Volume 109 | Number 3 | November 1991 | Pages 278-296
Technical Paper | doi.org/10.13182/NSE91-A23853
Articles are hosted by Taylor and Francis Online.
The uncertainty in the burnup reactivity swing δkb attributable to nuclear data uncertainties is analyzed using depletion-dependent sensitivity coefficients for single- and multicycle equilibrium depletion. Four systems are analyzed with design features that encompass many of the design options considered for current U.S. advanced liquid-metal reactor cores. These systems, while characterized by very different δkb values in the range from —0.22 to 3.87% Δk, exhibit much smaller differences in their δkb uncertainties, which range from 0.18 to 0.33% Δk. The δkb uncertainties depend primarily on the design choices of core size and fissile fuel type, as well as whether the analysis represents multicycle effects. For all reactors analyzed, the burnup swing uncertainty is dominated by the 238U capture reaction. The potential for reducing uncertainties by a factor of 3 by use of available integral experiment results is also demonstrated.