ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
H. S. Khalil, R. N. Hill
Nuclear Science and Engineering | Volume 109 | Number 3 | November 1991 | Pages 221-266
Technical Paper | doi.org/10.13182/NSE91-A23851
Articles are hosted by Taylor and Francis Online.
Systematic analyses of alternative methods for reducing the sodium void worth for plutonium-fueled liquid-metal reactors (LMRs) have been performed. The focus is on core designs of recent interest in the U.S. LMR program, i.e., designs in the 450- to 1200-MW(thermal) size range that make use of metal alloy fuel. The design alternatives encompass changes in composition and geometry. An internally consistent and comprehensive evaluation is made of the void worth reduction achievable by various methods and of the associated core physics performance trade-offs. The performance penalties (e.g., the reduced breeding efficiency and the increases in burnup reactivity loss and fissile mass requirement) caused by design changes that significantly reduce the void worth are quantified, and the relative merits of each design option are assessed. The results indicate that the penalties in burnup reactivity loss and fissile requirement can be minimized by use of a “tightly coupled” radially heterogeneous configuration of minimum volume consistent with fuel rating limits and by adjusting the core height-to-diameter ratio to a value sufficiently small to yield an acceptable void worth. The reactor breeding ratio penalty, however, is minimized by the use of loosely coupled heterogeneous cores or annular cores with a large central blanket zone. Penalties in core radius and volume can be minimized by core composition changes, specifically by replacing a fraction of the fuel (or steel) with sodium or a moderating material.