ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ribbon-cutting scheduled for Advanced Manufacturing Collaborative
Energy Secretary Chris Wright will attend the opening of the Advanced Manufacturing Collaborative in Aiken, S.C., on August 7. Wright will deliver remarks and join Savannah River National Laboratory leadership and partners for a ribbon-cutting ceremony.
C. Y. Fu
Nuclear Science and Engineering | Volume 109 | Number 1 | September 1991 | Pages 18-25
Technical Paper | doi.org/10.13182/NSE91-A23841
Articles are hosted by Taylor and Francis Online.
Pairing corrections in particle-hole (exciton) state-density formulas used in precompound nuclear reaction theories are, strictly speaking, dependent on the nuclear excitation energy U and the exciton number n. A general formula for (U, n)-dependent pairing corrections was derived earlier for the exciton state-density formula for a system of one kind of fermion. A similar derivation is made for a system of two kinds of fermions, a system in which neutrons and protons occupy different sets of single-particle states. It is shown that the constant-pairing-energy correction used in standard statedensity formulas, such as U0 in Gilbert and Cameron, is a limiting case of the present general (U, n)-dependent results. Spin cutoff factors are calculated using the same pairing theory and parameterized into an explicit (U, n)-dependent function, thereby defining the exciton level-density formula for two kinds of fermions. The results show that the ratios in the exciton level densities in the one- and two-fermion approaches vary with both U and n, thus, most likely leading to differences in calculated compound-to-precompound ratios. However, the differences in the spin cutoff factors in the two cases are found to be rather small.