ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Akio Yamamoto
Nuclear Science and Engineering | Volume 145 | Number 3 | November 2003 | Pages 291-298
Technical Paper | doi.org/10.13182/NSE03-A2384
Articles are hosted by Taylor and Francis Online.
In the response matrix method, a numerical divergence problem has been reported when extremely small or large discontinuity factors are utilized in the calculations. In this paper, an alternative response matrix formulation to solve the divergence problem is discussed, and properties of iteration matrixes are investigated through eigenvalue analyses. In the conventional response matrix formulation, partial currents between adjacent nodes are assumed to be discontinuous, and outgoing partial currents are converted into incoming partial currents by the discontinuity factor matrix. Namely, the partial currents of the homogeneous system (i.e., homogeneous partial currents) are treated in the conventional response matrix formulation. In this approach, the spectral radius of an iteration matrix for the partial currents may exceed unity when an extremely small or large discontinuity factor is used. Contrary to this, an alternative response matrix formulation using heterogeneous partial currents is discussed in this paper. In the latter approach, partial currents are assumed to be continuous between adjacent nodes, and discontinuity factors are directly considered in the coefficients of a response matrix. From the eigenvalue analysis of the iteration matrix for the one-group, one-dimensional problem, the spectral radius for the heterogeneous partial current formulation does not exceed unity even if an extremely small or large discontinuity factor is used in the calculation; numerical stability of the alternative formulation is superior to the conventional one. The numerical stability of the heterogeneous partial current formulation is also confirmed by the two-dimensional light water reactor core analysis. Since the heterogeneous partial current formulation does not require any approximation, the converged solution exactly reproduces the reference solution when the discontinuity factors are directly derived from the reference calculation.