ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Taro Ueki, Forrest B. Brown, D. Kent Parsons, Drew E. Kornreich
Nuclear Science and Engineering | Volume 145 | Number 3 | November 2003 | Pages 279-290
Technical Paper | doi.org/10.13182/NSE03-04
Articles are hosted by Taylor and Francis Online.
The cycle-to-cycle correlation (autocorrelation) in Monte Carlo criticality calculations is analyzed concerning the dominance ratio of fission kernels. The mathematical analysis focuses on how the eigenfunctions of a fission kernel decay if operated on by the cycle-to-cycle error propagation operator of the Monte Carlo stationary source distribution. The analytical results obtained can be summarized as follows: When the dominance ratio of a fission kernel is close to unity, autocorrelation of the k-effective tallies is weak and may be negligible, while the autocorrelation of the source distribution is strong and decays slowly. The practical implication is that when one analyzes a critical reactor with a large dominance ratio by Monte Carlo methods, the confidence interval estimation of the fission rate and other quantities at individual locations must account for the strong autocorrelation. Numerical results are presented for sample problems with a dominance ratio of 0.85-0.99, where Shannon and relative entropies are utilized to exclude the influence of initial nonstationarity.