ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yasuki Kowata , Nobuo Fukumura
Nuclear Science and Engineering | Volume 108 | Number 3 | July 1991 | Pages 308-318
Technical Note | doi.org/10.13182/NSE91-A23828
Articles are hosted by Taylor and Francis Online.
The effects on coolant void reactivity from soluble poison and from control rods inserted into the moderator of a light-water-cooled pressure-tube-type heavy water reactor (HWR) are studied in experiments and theoretical analyses. The soluble neutron absorber is 10B burnable poison uniformly dissolved in the moderator, and the boron carbide control rods are inserted into the moderator vertically between fuel channels. The reactivity caused by the increased void fraction is measured in the deuterium critical assembly (DCA). The void reactivity becomes less negative with the soluble neutron absorber, and the change is nearly proportional to the concentration of poison. The void reactivity is not as dependent on the number of control rods inserted, and the incremental positive shift lessens with increasing control rod worth. Experimental and calculated (WIMS-D4 code) results agree within ±1 $., The effects on void reactivity caused by the neutron absorbers are investigated by perturbation analysis. Neutrons are easily thermalized by light water in the pressure tube at lower void fractions, and some diffuse into the heavy water moderator. More thermal neutrons are absorbed in the heavy water in the presence of an absorber than with a higher void fraction.