ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
W. E. Abbott, E. J. Allen
Nuclear Science and Engineering | Volume 108 | Number 3 | July 1991 | Pages 278-288
Technical Note | doi.org/10.13182/NSE91-A23825
Articles are hosted by Taylor and Francis Online.
Two new difference schemes are derived for numerically solving the transport equation in spherical geometry. The first difference method is positive; i.e., the calculated fluxes are never negative. Furthermore, for the first method, the error expansion is suitable for applying Richardson extrapolation with respect to both spatial and angular variables to increase the accuracy of the approximate fluxes. Numerical experiments illustrate the accuracy obtained using this procedure, as well as demonstrate that the accuracy of the second difference method is significantly improved through application of Richardson extrapolation. In addition, the numerical results indicate that the second method is significantly more accurate than the standard nonextrapolated diamond-difference method for numerically solving the transport equation in spherical geometry.