ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
W. E. Abbott, E. J. Allen
Nuclear Science and Engineering | Volume 108 | Number 3 | July 1991 | Pages 278-288
Technical Note | doi.org/10.13182/NSE91-A23825
Articles are hosted by Taylor and Francis Online.
Two new difference schemes are derived for numerically solving the transport equation in spherical geometry. The first difference method is positive; i.e., the calculated fluxes are never negative. Furthermore, for the first method, the error expansion is suitable for applying Richardson extrapolation with respect to both spatial and angular variables to increase the accuracy of the approximate fluxes. Numerical experiments illustrate the accuracy obtained using this procedure, as well as demonstrate that the accuracy of the second difference method is significantly improved through application of Richardson extrapolation. In addition, the numerical results indicate that the second method is significantly more accurate than the standard nonextrapolated diamond-difference method for numerically solving the transport equation in spherical geometry.