ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
J. Stepanek , M. Segev
Nuclear Science and Engineering | Volume 108 | Number 3 | July 1991 | Pages 215-229
Technical Paper | doi.org/10.13182/NSE91-A23820
Articles are hosted by Taylor and Francis Online.
A surface current methodology is developed to respond to the need for treating the various levels of material heterogeneity in a double-heterogeneous multilayer multicell in processing neutron multigroup cross sections in the resonance as well as in the thermal energy range. First, the basic surface cosine current transport equations to calculate the energy-dependent neutron flux spatial distribution in the multilayered multicell are formulated. Slab, spherical, and cylindrical geometries, as well as square and hexagonal lattices and pebble-bed configurations with white or reflective cell boundary conditions, are considered., Second, starting from the surface cosine current formulation, a two-zone three-layer multicell formalism for reduction of the heterogeneous flux expressions to equivalent homogeneous flux expressions for the “table” method is developed. The “outer (right side)” as well as “inner (left side)” Dancoff probabilities can be calculated for any particular layer., This formalism allows an infinite as well as a limited number of second-heterogeneity cells within a partial first-heterogeneity cell layer to be considered. Also, the number of the first- as well as second-heterogeneity cell types is quite general., An accurate, efficient, and compact interpolation procedure is used to calculate the basic collision probabilities. These are transmission and escape probabilities for shells in slab, cylindrical, and spherical geometries, as well as Dancoff probabilities for cylinders in square and hexagonal lattices., The use of the interpolation procedure is exemplified in a multilayer multicell approximation for the Dancoff probability, enabling a routine evaluation of the equivalence-based shielded resonance integral in highly complex lattices of slab, cylindrical, or spherical cells.