ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Sudip S. Dosanjh, Martin Pilch
Nuclear Science and Engineering | Volume 108 | Number 2 | June 1991 | Pages 172-183
Technical Paper | doi.org/10.13182/NSE91-A23815
Articles are hosted by Taylor and Francis Online.
During hypothetical severe nuclear reactor accidents, structural materials in the reactor vessel can relocate downward and form debris regions above the lower head. A one-dimensional model is presented that considers melt progression in the debris as well as the thermal and mechanical response of the head. Only creep rupture of the lower head is considered; however, other modes of vessel failure can be considered with the methodology developed, and the model can easily be extended to higher dimensions. Numerical solutions are compared with an analytical model developed by T G. Theofanous. The goal of the work is to identify the parameters that most affect the state of the debris at the time of lower head creep rupture. Results of sensitivity analyses presented indicate that melt relocation phenomena, the initial composition profile of the debris, and the pressure inside the vessel are all important. On the other hand, changing the porosity or the particle diameter produces less significant effects because several competing phenomena cancel each other.