ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Sudip S. Dosanjh, Martin Pilch
Nuclear Science and Engineering | Volume 108 | Number 2 | June 1991 | Pages 172-183
Technical Paper | doi.org/10.13182/NSE91-A23815
Articles are hosted by Taylor and Francis Online.
During hypothetical severe nuclear reactor accidents, structural materials in the reactor vessel can relocate downward and form debris regions above the lower head. A one-dimensional model is presented that considers melt progression in the debris as well as the thermal and mechanical response of the head. Only creep rupture of the lower head is considered; however, other modes of vessel failure can be considered with the methodology developed, and the model can easily be extended to higher dimensions. Numerical solutions are compared with an analytical model developed by T G. Theofanous. The goal of the work is to identify the parameters that most affect the state of the debris at the time of lower head creep rupture. Results of sensitivity analyses presented indicate that melt relocation phenomena, the initial composition profile of the debris, and the pressure inside the vessel are all important. On the other hand, changing the porosity or the particle diameter produces less significant effects because several competing phenomena cancel each other.