ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
P. A. Landeyro, A. Buccafurni
Nuclear Science and Engineering | Volume 108 | Number 2 | June 1991 | Pages 126-149
Technical Paper | doi.org/10.13182/NSE91-A23813
Articles are hosted by Taylor and Francis Online.
Estimates are made of the positive reactivity introduced through the growth of the coolant void fraction in the Chernobyl reactor at both the average burnup value given by the Soviets and the maximum value. Using Monte Carlo models, various possible axial burnup distributions, displacer models, conditions in the control channels, and control rod positions are considered in calculating the insertion of positive reactivity by the manual and emergency control rods, that is, the “positive scram.” Two possible scenarios are examined for a second reactivity peak: (a) creation of a mixture of fuel, water, and cladding in a number of central fuel channels, resulting in the explosion of these channels, and (b) uniform vaporization throughout the entire reactor, resulting in reactor depressurization. From the data presented in this study, it can be concluded that vaporization of the cooling water in the fuel channel gave the highest reactivity contribution to the Chernobyl accident. The positive reactivity due to insertion of the manual and emergency control rods played only a minor role in the reactivity balance of the accident.