ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
David J. Loaiza, Rene Sanchez
Nuclear Science and Engineering | Volume 145 | Number 2 | October 2003 | Pages 256-266
Technical Paper | doi.org/10.13182/NSE03-A2381
Articles are hosted by Taylor and Francis Online.
The basic characteristics of waste materials such as silicon dioxide, aluminum, and iron fueled with highly enriched uranium (HEU) and moderated and reflected by polyethylene were investigated. These critical experiments were performed at the Los Alamos Criticality Experiments Facility. The primary intention of these experiments is to provide supplementary data that can be used to validate and improve criticality data for the Yucca Mountain and the Hanford Storage Waste Tanks Projects. The secondary intention of the 2×2 experiments is to reduce the H/U ratio and increase the waste material/U ratio from previously published experiments. These experiments were designed to supply data for interlaced waste material/fuel/moderator systems on the thermal region. The experiments contained silicon dioxide (SiO2), aluminum (Al), and iron (Fe) mixed with 93.23% enriched uranium and moderated and reflected by polyethylene. This analysis systematically examines uncertainties associated with the critical experiments as they affect the calculated multiplication factor. The systematic analysis is separated into uncertainties due to mass measurements, uncertainties due to fabrication, and uncertainties due to composition. Each type of uncertainty is analyzed individually, and a total combined uncertainty is derived. The SiO2-HEU experiment had a measured keff of 0.993, the Al-HEU experiment had a measured keff of 0.990, and the Fe-HEU experiment had a measured keff of 1.000. The calculated keff values tend to agree well with the experimental values. The sensitivity analysis of these critical experiments yielded a total combined uncertainty on the measured keff of ±0.0044 for SiO2, of ±0.0048 for Al, and of ±0.0046 for Fe.