ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Dov Ingman, Leib Reznik
Nuclear Science and Engineering | Volume 107 | Number 3 | March 1991 | Pages 284-290
Technical Paper | doi.org/10.13182/NSE91-A23791
Articles are hosted by Taylor and Francis Online.
An exact analytical solution of a reliability evolution equation is obtained for steady-state loading conditions. This solution is used as a Green’s function for more complicated loading. The importance of the dynamic aspects of failure conditions is revealed. The observable effects of an abrupt decrease in component reliability with a stepwise stress increase and the effects of apparent ceasing of deterioration with a stepwise stress reduction are explained. It is shown that deviations from the life fraction rule result from the combined dynamics of damage accumulation and failure processes rather than from requirements of nonlinearity of damage mechanisms with time.