ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
F. Corvi, G. Fioni, F. Gasperini, P. B. Smith
Nuclear Science and Engineering | Volume 107 | Number 3 | March 1991 | Pages 272-283
Technical Paper | doi.org/10.13182/NSE91-A23790
Articles are hosted by Taylor and Francis Online.
A set of efficiencies and response functions for 18 gamma rays in the range from 0.2 to 8.4 MeV has been experimentally determined via a (p,γ) coincidence method for a neutron capture detection setup. This consists of two cylindrical deuterated hexabenzene (C6D6) liquid scintillators placed symmetrically and normally with respect to the beam and operated in sum mode. A pulse-height weighting function is derived from this data set and applied to the measurement of neutron capture in the 1.15-keV resonance of 56Fe relative to capture in the 5.2-eV resonance of 109Ag. A value of Γn = 62.9 ± 2.1 meV has been obtained for the neutron width, in good agreement with the value of Γn = 61.7 ± 0.9 meV from transmission measurements. The extension of the validity of this weighting function to samples of different thickness and composition is discussed.