ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
F. Corvi, G. Fioni, F. Gasperini, P. B. Smith
Nuclear Science and Engineering | Volume 107 | Number 3 | March 1991 | Pages 272-283
Technical Paper | doi.org/10.13182/NSE91-A23790
Articles are hosted by Taylor and Francis Online.
A set of efficiencies and response functions for 18 gamma rays in the range from 0.2 to 8.4 MeV has been experimentally determined via a (p,γ) coincidence method for a neutron capture detection setup. This consists of two cylindrical deuterated hexabenzene (C6D6) liquid scintillators placed symmetrically and normally with respect to the beam and operated in sum mode. A pulse-height weighting function is derived from this data set and applied to the measurement of neutron capture in the 1.15-keV resonance of 56Fe relative to capture in the 5.2-eV resonance of 109Ag. A value of Γn = 62.9 ± 2.1 meV has been obtained for the neutron width, in good agreement with the value of Γn = 61.7 ± 0.9 meV from transmission measurements. The extension of the validity of this weighting function to samples of different thickness and composition is discussed.