ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
S. P. Monahan, W. L. Filippone
Nuclear Science and Engineering | Volume 107 | Number 3 | March 1991 | Pages 201-216
Technical Paper | doi.org/10.13182/NSE91-A23785
Articles are hosted by Taylor and Francis Online.
An integral discrete ordinates method designed for use on modern, large-memory, vector and/or parallel processing supercomputers has been developed. The method is similar to conventional Sn techniques in that the medium is divided into spatial mesh cells and discrete directions are used. However, in place of an approximate differencing scheme, a nearly exact matrix representation of the streaming operator is determined. Although extremely large, this matrix can be stored on today’s large-memory computers for repeated use in the source iteration. Since the source iteration is cast in matrix form, it benefits enormously from vector and/or parallel processing, if available. Several electron transport test results are presented demonstrating a reduction in numerical diffusion and elimination of observable ray effects.