ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Masayuki Nakagawa, Takamasa Mori, Makoto Sasaki
Nuclear Science and Engineering | Volume 107 | Number 1 | January 1991 | Pages 58-66
Technical Paper | doi.org/10.13182/NSE91-A23780
Articles are hosted by Taylor and Francis Online.
Vectorization methods used in Monte Carlo codes for particle transport calculations are examined. Event and zone selection methods developed from conventional all-zone and one-zone algorithms have been implemented in a general-purpose vectorized code, GMVP. Moreover, a vectorization procedure to treat multiple-lattice geometry has been developed using these methods. Use of lattice geometry can reduce the computation cost for a typical pressurized water reactor fuel subassembly calculation, especially when the zone selection method is used. Sample calculations for external and fission source problems are used to compare the performances of both methods with the results of conventional scalar codes. Though the speedup resulting from vectorization depends on the problem solved, a factor of 7 to 10 is obtained for practical problems on the FACOM VP-100 computer compared with the conventional scalar code, MORSE-CG.