ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Masayuki Nakagawa, Takamasa Mori, Makoto Sasaki
Nuclear Science and Engineering | Volume 107 | Number 1 | January 1991 | Pages 58-66
Technical Paper | doi.org/10.13182/NSE91-A23780
Articles are hosted by Taylor and Francis Online.
Vectorization methods used in Monte Carlo codes for particle transport calculations are examined. Event and zone selection methods developed from conventional all-zone and one-zone algorithms have been implemented in a general-purpose vectorized code, GMVP. Moreover, a vectorization procedure to treat multiple-lattice geometry has been developed using these methods. Use of lattice geometry can reduce the computation cost for a typical pressurized water reactor fuel subassembly calculation, especially when the zone selection method is used. Sample calculations for external and fission source problems are used to compare the performances of both methods with the results of conventional scalar codes. Though the speedup resulting from vectorization depends on the problem solved, a factor of 7 to 10 is obtained for practical problems on the FACOM VP-100 computer compared with the conventional scalar code, MORSE-CG.