ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
H. J. Brede, G. Dietze, H. Klein, H. Schölermann
Nuclear Science and Engineering | Volume 107 | Number 1 | January 1991 | Pages 22-34
Technical Paper | doi.org/10.13182/NSE91-A23778
Articles are hosted by Taylor and Francis Online.
The sums of the cross sections 12C(n, α0)9Be and I2C(n,n′3α) are determined in the neutron energy range between 7.4 and 11 MeV. An NE-213 scintillation detector is simultaneously used as a carbon target, an alpha-particle detector, and a neutron fluence monitor. By comparing the measured and calculated response spectra, the neutron-induced alpha-particle events in the scintillation volume are separated and the cross sections σn,α0 + σn,n′3α are determined relative to the n-p scattering cross section. The pulse-height distribution due to alpha particles allows the angular distribution to be extracted on the basis of the reaction kinematics and an accurately determined light output function for alpha particles in the NE-213 detector.