ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
H. Vonach, A. Pavlik, B. Strohmaier
Nuclear Science and Engineering | Volume 106 | Number 4 | December 1990 | Pages 409-414
Technical Paper | doi.org/10.13182/NSE90-A23766
Articles are hosted by Taylor and Francis Online.
It is demonstrated that (n,2n) cross sections for many medium-mass and heavy nuclei can be determined with high accuracy (∼3%) from existing data on nonelastic cross sections and energy-differential neutron emission cross sections. Using this method, the (n,2n) cross sections for 93Nb, 209Bi, and the natural elements tantalum, tungsten, and lead are determined for a neutron energy of 14 A MeV. There is reasonable agreement with the existing measurements; however, our results considerably reduce the uncertainties of these cross sections. For lead, which is especially important as a possible neutron multiplier material in fusion reactors, the accuracy requested for this purpose is achieved. It is further demonstrated that the peak values of the (n,2n) excitation functions for heavy nuclei (A > 190) show a very smooth behavior with mass number, which allows prediction of unknown (n,2n) cross sections with accuracies better than 3%.