ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Siaka O. Yusuf, David K. Wehe
Nuclear Science and Engineering | Volume 106 | Number 4 | December 1990 | Pages 399-408
Technical Paper | doi.org/10.13182/NSE90-A23765
Articles are hosted by Taylor and Francis Online.
Analog and digital methods have been developed to compensate for the time delay associated with rhodium self-powered neutron detector signals. This delay is caused by the decay of the neutron-activated rhodium and results in a current signal with unfavorable time response characteristics. The compensating analog method is based on the use of lead-lag networks to eliminate undesirable poles and zeros. The digital method takes digitized signals and numerically solves the inverse kinetics equation that relates reactor flux to the detector current at all earlier times. These methods were tested in a realistic reactor environment, and the results illustrate the accuracy achieved using each method.