ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ribbon-cutting scheduled for Advanced Manufacturing Collaborative
Energy Secretary Chris Wright will attend the opening of the Advanced Manufacturing Collaborative in Aiken, S.C., on August 7. Wright will deliver remarks and join Savannah River National Laboratory leadership and partners for a ribbon-cutting ceremony.
Y. Y. Azmy
Nuclear Science and Engineering | Volume 105 | Number 2 | June 1990 | Pages 174-183
Technical Paper | doi.org/10.13182/NSE90-A23746
Articles are hosted by Taylor and Francis Online.
A novel approach for optimizing the geometrical shape of an object designed to extremize a set of performance criteria is developed and applied to the problem of optimizing the shape of a cold neutron source. First, an analogy is drawn between the shape optimization problem and a state space search, which is one of the fundamental problems in artificial intelligence applications. Then, a description is given of the implementation of this new approach into the computer code DAIT in which the physical model is represented by a two-group, r-z geometry nodal diffusion method, and the search is conducted via a truncated breadth-first algorithm. This algorithm reduces to the traditional nearest neighbor algorithm if the search breadth is truncated at one. The accuracy of the nodal diffusion method solution on the meshes of interest in this work is established, as well as the adequacy of the diffusion approximation itself via comparisons with transport theory solutions. Next, the dependence of the optimum shape and its value on several physical and search parameters are investigated via several numerical experiments. Finally, it is shown that starting from different initial states, the same final optimum state can be obtained if the search breadth is increased sufficiently.