ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Y. Y. Azmy
Nuclear Science and Engineering | Volume 105 | Number 2 | June 1990 | Pages 174-183
Technical Paper | doi.org/10.13182/NSE90-A23746
Articles are hosted by Taylor and Francis Online.
A novel approach for optimizing the geometrical shape of an object designed to extremize a set of performance criteria is developed and applied to the problem of optimizing the shape of a cold neutron source. First, an analogy is drawn between the shape optimization problem and a state space search, which is one of the fundamental problems in artificial intelligence applications. Then, a description is given of the implementation of this new approach into the computer code DAIT in which the physical model is represented by a two-group, r-z geometry nodal diffusion method, and the search is conducted via a truncated breadth-first algorithm. This algorithm reduces to the traditional nearest neighbor algorithm if the search breadth is truncated at one. The accuracy of the nodal diffusion method solution on the meshes of interest in this work is established, as well as the adequacy of the diffusion approximation itself via comparisons with transport theory solutions. Next, the dependence of the optimum shape and its value on several physical and search parameters are investigated via several numerical experiments. Finally, it is shown that starting from different initial states, the same final optimum state can be obtained if the search breadth is increased sufficiently.