ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Y. Y. Azmy
Nuclear Science and Engineering | Volume 105 | Number 2 | June 1990 | Pages 174-183
Technical Paper | doi.org/10.13182/NSE90-A23746
Articles are hosted by Taylor and Francis Online.
A novel approach for optimizing the geometrical shape of an object designed to extremize a set of performance criteria is developed and applied to the problem of optimizing the shape of a cold neutron source. First, an analogy is drawn between the shape optimization problem and a state space search, which is one of the fundamental problems in artificial intelligence applications. Then, a description is given of the implementation of this new approach into the computer code DAIT in which the physical model is represented by a two-group, r-z geometry nodal diffusion method, and the search is conducted via a truncated breadth-first algorithm. This algorithm reduces to the traditional nearest neighbor algorithm if the search breadth is truncated at one. The accuracy of the nodal diffusion method solution on the meshes of interest in this work is established, as well as the adequacy of the diffusion approximation itself via comparisons with transport theory solutions. Next, the dependence of the optimum shape and its value on several physical and search parameters are investigated via several numerical experiments. Finally, it is shown that starting from different initial states, the same final optimum state can be obtained if the search breadth is increased sufficiently.