ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Y. Y. Azmy
Nuclear Science and Engineering | Volume 105 | Number 2 | June 1990 | Pages 174-183
Technical Paper | doi.org/10.13182/NSE90-A23746
Articles are hosted by Taylor and Francis Online.
A novel approach for optimizing the geometrical shape of an object designed to extremize a set of performance criteria is developed and applied to the problem of optimizing the shape of a cold neutron source. First, an analogy is drawn between the shape optimization problem and a state space search, which is one of the fundamental problems in artificial intelligence applications. Then, a description is given of the implementation of this new approach into the computer code DAIT in which the physical model is represented by a two-group, r-z geometry nodal diffusion method, and the search is conducted via a truncated breadth-first algorithm. This algorithm reduces to the traditional nearest neighbor algorithm if the search breadth is truncated at one. The accuracy of the nodal diffusion method solution on the meshes of interest in this work is established, as well as the adequacy of the diffusion approximation itself via comparisons with transport theory solutions. Next, the dependence of the optimum shape and its value on several physical and search parameters are investigated via several numerical experiments. Finally, it is shown that starting from different initial states, the same final optimum state can be obtained if the search breadth is increased sufficiently.