ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Alan V. Jones
Nuclear Science and Engineering | Volume 105 | Number 2 | June 1990 | Pages 105-122
Technical Paper | doi.org/10.13182/NSE90-A23741
Articles are hosted by Taylor and Francis Online.
One of the more severe scenarios for a single subassembly accident in a liquid-metal fast breeder reactor is the formation of a bottled-up pool of fuel and steel in the assembly and its subsequent lateral discharge into a neighbor through a breach in the can wall. Most of the calculations and experiments to investigate this scenario have assumed that the discharge is single phase. Recent experimental evidence from SCARABEE suggests that the discharge is more likely to be two phase. A series of SIMMER calculations has been performed to examine the major features of a two-phase fuel discharge into a rod bundle. Flashing is found to reduce the mass flux of the discharge; the vapor so generated then accelerates the liquid in the discharge, resulting in higher melt velocities and generally deeper penetration of the discharge into the bundle before plugging occurs as compared with the singlephase case.