ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Charles J. Call, Ralph W. Moir
Nuclear Science and Engineering | Volume 104 | Number 4 | April 1990 | Pages 364-373
Technical Paper | doi.org/10.13182/NSE90-A23734
Articles are hosted by Taylor and Francis Online.
Modifications to an old concept for using peaceful nuclear explosions to achieve practical fusion power are discussed. With this concept, useful energy and materials are obtained by repetitively setting off nuclear explosions in an underground cavity. This proposal, which is based on molten-salt technology, involves two modifications:, Line the cavity with steel to make it engineerable and predictable rather than relying on an unsupported earthen cavity such as a cavity excavated in a salt dome. Use molten salt rather than steam. More than 70% of the energy released is then absorbed by liquid-salt evaporation, and the pressure to be contained for a given yield can be reduced by a factor of 3 or more. These modifications result in several improvements in the safety and feasibility of the contained fusion concept:, The tritium produced, being insoluble in the molten salt, can easily be pumped away and purified when all the vaporized salt condenses, rather than being mixed with steam. The tritium inventory is substantially reduced, effectively reducing the large hazard in case of accidental venting to the atmosphere. Reducing the yield used in the older studies could reduce the cost of the cavity considerably. These improvements may make the concept practical today, and a reexamination of the concept appears in order.