ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
V. Sundararaman
Nuclear Science and Engineering | Volume 104 | Number 3 | March 1990 | Pages 296-299
Technical Note | doi.org/10.13182/NSE90-A23729
Articles are hosted by Taylor and Francis Online.
Several higher order finite difference schemes have been proposed in the literature for the solution of a discrete ordinates transport equation. The performance charcteristics of these methods have been studied through numerical and mathematical analyses. In these studies, attention was restricted to a single, homogeneous medium and to uniform meshes only. However, in practice one has to employ nonuniform meshes such as, for instance, near the interface of any two media. A second criterion that needs examination is the influence of the cross section of the medium on the behavior of these schemes. Finally, the mathematical analysis is, in principle, restricted to a single energy group. Although it is believed that there should be no significant differences in the conclusions with respect to the multigroup problem, it appears that the order of convergence is not as high as estimated when the higher order schemes are applied to a multigroup neutron transport. The results of test cases are presented and discussed, where some of the finite difference schemes, when applied to an interface and multigroup problems, exhibit different behavior than reported earlier.