ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Eduardo V. Depiante, John E. Meyer
Nuclear Science and Engineering | Volume 104 | Number 2 | February 1990 | Pages 169-182
Technical Paper | doi.org/10.13182/NSE90-A23713
Articles are hosted by Taylor and Francis Online.
The analysis of transients in nuclear power plants is a complex problem normally requiring use of simulation tools. One of these tools, known as parity simulation, exploits the concept of electrical analogs of a physical system. Electrical analogs of the components of a nuclear plant are constructed and interconnected in a highly user-oriented facility known as a parity simulator. Parity simulation originated in the study of electronic network transients and spread to neutronic and single-phase flow applications. This work focuses on the application of parity simulation to transient thermal-hydraulic two-phase flow. The development of a two-phase flow element is described. The governing mass, momentum, and energy equations along with other conditions are applied to a pipe section. The resulting model is then used to construct a circuit analog. The proposed circuit analog requires nonstandard components, the design and implementation of which is discussed. Subsequently, a formulation for a steam generator is given. Results obtained for different cases are presented. Comparison with reference numerical solutions shows general agreement in both cases.