ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Eduardo V. Depiante, John E. Meyer
Nuclear Science and Engineering | Volume 104 | Number 2 | February 1990 | Pages 153-168
Technical Paper | doi.org/10.13182/NSE90-A23712
Articles are hosted by Taylor and Francis Online.
The analysis of transients in nuclear power plants is a complex problem normally requiring use of simulation tools. Although analog computers have been used for dynamic simulation, the most common approach involves use of a digital computer. An alternative method to attack the same problem, known as parity simulation, is described. Parity simulation, which originated in the study of electronic network transients, exploits the concept of electrical analogs of a physical system. Electrical analogs of the components of a system are constructed and interconnected in a highly user-oriented facility known as a parity simulator. The application of parity simulation to transient thermal-hydraulic single-phase flow is described. The development of a single-phase incompressible flow element is described. The governing mass, momentum, and energy equations along with other conditions are applied to a pipe section. The resulting model is then used to construct a circuit analog. The proposed circuit analog requires nonstandard components, the design and implementation of which is discussed. Subsequently, a formulation for single-phase compressible flow is given. Results obtained for different cases are presented. Comparison with reference numerical solutions shows general agreement.