ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Eduardo V. Depiante, John E. Meyer
Nuclear Science and Engineering | Volume 104 | Number 2 | February 1990 | Pages 153-168
Technical Paper | doi.org/10.13182/NSE90-A23712
Articles are hosted by Taylor and Francis Online.
The analysis of transients in nuclear power plants is a complex problem normally requiring use of simulation tools. Although analog computers have been used for dynamic simulation, the most common approach involves use of a digital computer. An alternative method to attack the same problem, known as parity simulation, is described. Parity simulation, which originated in the study of electronic network transients, exploits the concept of electrical analogs of a physical system. Electrical analogs of the components of a system are constructed and interconnected in a highly user-oriented facility known as a parity simulator. The application of parity simulation to transient thermal-hydraulic single-phase flow is described. The development of a single-phase incompressible flow element is described. The governing mass, momentum, and energy equations along with other conditions are applied to a pipe section. The resulting model is then used to construct a circuit analog. The proposed circuit analog requires nonstandard components, the design and implementation of which is discussed. Subsequently, a formulation for single-phase compressible flow is given. Results obtained for different cases are presented. Comparison with reference numerical solutions shows general agreement.