ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Toshihiro Yamamoto, Yoshinori Miyoshi, Takehide Kiyosumi
Nuclear Science and Engineering | Volume 145 | Number 1 | September 2003 | Pages 132-144
Technical Paper | doi.org/10.13182/NSE03-A2369
Articles are hosted by Taylor and Francis Online.
Evaluated criticality benchmark data obtained at the Static Criticality Experiment Facility (STACY) account for a large percentage of low-enriched uranium (LEU) solution systems documented in the "International Handbook of Evaluated Criticality Safety Benchmark Experiments." These data are available for validation of computer codes and nuclear data used for criticality safety analyses of LEU solution systems. The calculated keff's for the water-reflected STACY criticality experiments have been overestimated with JENDL-3.2 by ~0.7%. These overestimations were kept in mind while making modifications of the fission spectrum and the fission cross section of 235U, and the (n,p) cross section of 14N in JENDL-3.3. Because of these modifications, the keff's calculated with JENDL-3.3 were largely improved. The contributions of these modifications in JENDL-3.3 with respect to JENDL-3.2 and ENDF/B-VI.5 were investigated by performing perturbation calculations. The overestimation of the elastic-scattering cross section of 56Fe in the mega-electron-volt range was one of the reasons for the keff overestimations for the STACY experiments with JENDL-3.2. The modification of 56Fe cross sections in JENDL-3.3 reduces keff's in the STACY experiments by 0.2%. The dependence of calculated keff's on uranium concentration still exists in JENDL-3.3. The overestimation of calculated keff's for the STACY experiments with JENDL-3.3 is not insignificant and is as much as 0.6%. These problems are to be resolved in a future evaluation of the cross-section library.